

Methods of Testing Reproductive Toxicity in Female Rats

Deepanjaly S, Ranjith D, Aruna B, Ananthu Vijayakrishnan, Vaishnavi Jagdeesh, Sanis Juliet

Department of Veterinary Pharmacology & Toxicology,

College of Veterinary and Animal Sciences, Pookode, Wayanad, Kerala

*Corresponding Author: ranjith946@gmail.com

DOI - <https://doi.org/10.5281/zenodo.13899109>

Received: September 15, 2024

Published: September 30, 2024

© All rights are reserved by Ranjith D

Introduction:

Reproductive toxicity refers to the harmful effects that chemicals or physical agents can have on the reproductive systems of both males and females, as well as on developing offspring. Female rats are frequently used as a model in these studies because their physiology closely mirrors that of humans. Additionally, their genetic consistency, short reproductive cycles, and cost-effectiveness make them an ideal choice for research. By using this model, scientists can explore how different substances may affect fertility and fetal development. These studies play a crucial role in assessing the risks posed by pharmaceuticals, environmental toxins, and other substances that could potentially impact reproductive health.

Critical Stages of Reproductive Toxicity Testing:

Reproductive toxicity testing in rats is divided into six key stages that help scientists assess how chemicals affect development and reproduction. The first stage, Stage A, spans from pre-mating to conception, focusing on fertility and early embryonic development. Stage B covers the period from conception to implantation, looking at how chemicals influence early embryo survival. Stage C, known as organogenesis, examines development from implantation until the closure of the hard palate, a critical phase for organ formation. Stage D continues from this point until birth, with a focus on identifying any teratogenic (birth defect-causing) effects. Stage E addresses the postnatal period, monitoring development from birth until weaning. Finally, Stage F evaluates the impact of substances on growth and reproductive ability from weaning to sexual maturity. These stages are essential for understanding how toxins or chemicals can affect reproduction and development at every phase of life.

Reproductive toxicity testing focuses on understanding how substances impact sexual function, fertility, and overall reproductive health. A key part of this research includes fertility and reproductive performance studies, conducted during the early stages of reproduction, which assess fertility, gamete production, and early pregnancy. Multigenerational studies go a step further, evaluating how these effects carry over to future generations.

For non-therapeutic substances, such as industrial chemicals, reproductive and developmental toxicity is often examined as part of long-term repeated-dose toxicity studies. These assessments measure key reproductive

endpoints like fertility rates, estrus cycle patterns, and the health and development of offspring. The evaluation of the estrus cycle is particularly important in female rats. Their cycle, which averages four days, is divided into four stages: estrus, metestrus, diestrus, and proestrus. To ensure they are ready for reproduction, female rats are monitored for 14 days before treatment and then paired with males for breeding. This allows researchers to track any changes in reproductive readiness.

Evaluation of Estrus Cycle:

The estrus cycle in female rats, averages 4 days, consists of four stages: estrus, metestrus, diestrus, and proestrus. Rats are evaluated 14 days before treatment and then cohabited with males to ensure reproductive readiness.

Fig.1 (Estrus) Shows cornified cells. **Fig.2** (Metestrus) is marked by a mix of keratinized epithelial cells and neutrophils. **Fig.3** (Diestrus) has fewer epithelial cells and an increase in leukocytes. **Fig.4** (Proestrus) is characterized by small, round, nucleated epithelial cells. **Fig.5** Typical fern pattern shown by estrus vaginal mucous.

Evaluation of Mating Behaviour:

In reproductive studies, males and females are paired for mating at a ratio of either 1:1 or 1:2. Successful mating is confirmed by the presence of sperm in vaginal smears or by spotting a copulatory plug, which also marks day zero of pregnancy. Female reproductive performance is assessed by measuring how long it takes for mating to occur during cohabitation, the number of females that successfully mate within each group, and the overall pregnancy rates. These indicators help researchers evaluate the impact of substances on reproductive success.

Evaluation of Uterus:

Parameters considered for evaluation of uterus:

- **Uterine Weight:** In non-pregnant females, uterine weight is a marker for evaluating estrogenic activity. It fluctuates during the estrus cycle, peaking at proestrus. Steroidogenesis inhibitors reduce uterine size, leading to weight loss, indicating estrogenic potency and toxicity.
- **Uterine contents:** The uterine horns are opened to examine the contents. The implantation sites are categorized based on their status, which may include early or late resorption, as well as live or dead foetuses. Additionally, the placenta is inspected for any abnormalities and weighed.

Evaluation of Ovary:

The ovary is essential for reproductive functions, including hormone production. Delayed ovulation may impair oocyte viability, raising the risk of trisomy and polyploidy. Disruptions in follicular development, ovulation, or corpus luteum function can negatively impact fertility. Ovarian weight is measured using standard techniques, accounting for dehydration effects and estrus cycle fluctuations. Histopathological evaluation focuses on follicular, luteal, and interstitial compartments, with quantitative analysis of primordial follicles and established sampling methodologies. The count of corpora lutea, indicative of ovulated oocytes, is crucial for implantation and pregnancy maintenance.

Conclusion:

The Reproductive toxicity testing entails a thorough assessment of six critical stages in rats to evaluate the effects of chemicals on fertility and reproductive health. Important evaluations comprise the examination of estrus cycles, mating behavior, and the health of reproductive organs. Studies on fertility and reproductive performance, along with multigenerational assessments, are vital for identifying the potential risks associated with chemical exposure.

References:

Casarett, L.J., 2008. *Casarett and Doull's toxicology: the basic science of poisons*. 7: 549-577

Cora, M.C., Kooistra, L. and Travlos, G., 2015. Vaginal cytology of the laboratory rat and mouse: review and criteria for the staging of the estrous cycle using stained vaginal smears. *Toxicologic pathology*, 43: 776-793.

Hayes, A.W. and Kobets, T., 2023. *Hayes' principles and methods of toxicology*. 1637-1714.

OECD [Organisation for Economic Cooperation and Development]. 2016. *Test No 421: Reproduction/Developmental Toxicity Screening Test*, OECD Publishing, Paris.

Paccola, C.C., Resende, C.G., Stumpf, T., Miraglia, S.M. and Cipriano, I., 2018. The rat estrous cycle revisited: a quantitative and qualitative analysis. *Animal Reproduction (AR)*, 10: 677-683.

Srinivasan, M.R., Sabarinathan, A., Geetha, A., Shalini, K. and Sowmiya, M., 2017. A comparative study on staining techniques for vaginal exfoliative cytology of rat. *J of Pharmacol & Clin Res*, 3: 1-4.