

Bio Vet Innovator Magazine

Volume 2 (Issue 9) SEPTEMBER 2025

OPEN ACCESS

WORLD RABIES DAY - 28th SEPTEMBER

POPULAR ARTICLE

Rabies and Public Health: A Comprehensive Review

Krishna Nand Singh

Department of Veterinary Anatomy,
C.V.Sc. & A.H., A.N.D.U.A & T.,
Kumarganj- Ayodhya (U.P.), India

*Corresponding Author: krishnanandvet@gmail.com
DOI: <https://doi.org/10.5281/zenodo.17327082>

Received: September 10, 2025

Published: September 15, 2025

© All rights are reserved by Krishna N. Singh

Abstract:

Rabies remains one of the most lethal infectious diseases globally, with a case fatality rate approaching 100% once clinical symptoms manifest. This review examines the current epidemiological landscape of rabies, its impact on public health systems, and the multifaceted approaches required for prevention and control. Despite being entirely preventable through appropriate post-exposure prophylaxis, rabies continues to cause approximately 59,000 human deaths annually, with the burden disproportionately affecting resource-limited countries. This article synthesizes current evidence on rabies transmission dynamics, surveillance challenges, vaccination strategies, and the economic implications of rabies prevention programs. We highlight the critical role of One Health approaches in rabies elimination efforts and discuss emerging challenges in rabies control, including vaccine accessibility, wildlife reservoir management, and the impact of climate change on disease transmission patterns.

Keywords: rabies, public health, vaccination, One Health, disease elimination, zoonoses

Introduction:

Rabies, caused by viruses of the genus Lyssavirus, represents one of humanity's oldest recognized diseases, with descriptions dating back to ancient Mesopotamian texts from 2000 BCE. Despite millennia of awareness and the availability of effective vaccines and immunoglobulins, rabies continues to pose a significant public health challenge, particularly in developing nations. The disease's unique characteristics—its nearly 100% fatality rate, long incubation period, and zoonotic transmission—create complex challenges for public health systems worldwide.

The global burden of rabies extends far beyond its direct mortality impact. The disease creates substantial economic burdens through livestock losses, healthcare costs for post-exposure prophylaxis (PEP), and productivity losses in affected communities. Furthermore, rabies disproportionately affects the world's most vulnerable populations, including children and rural communities in Africa and Asia, where

access to life-saving vaccines and immunoglobulins remains limited.

Epidemiology and Global Burden:

- **Current Global Situation:** The World Health Organization estimates that rabies causes approximately 59,000 human deaths annually, with 95% of these deaths occurring in Africa and Asia. Children under 15 years of age account for 40% of all rabies deaths, reflecting both increased exposure risk through play behaviour and delays in seeking appropriate medical care. The true burden of rabies is likely underestimated due to inadequate surveillance systems in many endemic regions and misdiagnosis of rabies as other acute encephalitic conditions.
- **Transmission Dynamics:** Rabies transmission occurs primarily through bites from infected animals, with domestic dogs responsible for 99% of human rabies cases globally. The virus is present in the saliva of infected animals and enters the human body through broken skin or mucous membranes. Less common routes of transmission include scratches from infected animals, aerosol transmission in laboratory settings or bat caves, and extremely rare cases of human-to-human transmission through organ transplantation.

The incubation period of rabies is highly variable, ranging from days to years, with most cases developing symptoms within 1-3 months of exposure. This variability depends on factors including the viral load, location of the bite (proximity to the central nervous system), and individual host factors. The long incubation period provides a critical window for effective post-exposure prophylaxis but also complicates epidemiological investigations and contact tracing efforts.

- **Regional Variations:** Rabies epidemiology varies significantly across global regions. In most developed countries, canine rabies has been eliminated through comprehensive vaccination programs, and human cases are rare, typically associated with bat exposures or infections acquired during travel to endemic areas. In contrast, canine-mediated rabies remains endemic in much of Africa, Asia, and parts of Latin America, where dog vaccination coverage remains insufficient and access to human rabies vaccines is limited.

Wildlife rabies presents different challenges, with various species serving as reservoir hosts in different regions. In North America, bats, raccoons, skunks, and foxes maintain independent rabies virus variants, while in Europe, red foxes are the primary wildlife reservoir. The emergence of rabies in new wildlife populations, such as the spread of raccoon rabies along the eastern United States, demonstrates the dynamic nature of rabies ecology and the need for adaptive control strategies.

Clinical Presentation and Diagnosis:

- **Clinical Course:** Rabies typically progresses through distinct clinical phases following the incubation period. The prodromal phase lasts 2-10 days and is characterized by non-specific symptoms including fever, headache, malaise, and often pain or paresthesias at the bite site. This

phase is followed by the acute neurological phase, which manifests in two primary forms: furious (encephalitic) rabies in approximately 80% of cases, characterized by hyperactivity, hydrophobia, and aerophobia; and paralytic rabies in 20% of cases, presenting with ascending paralysis resembling Guillain-Barré syndrome.

Both forms of rabies progress to coma and death, typically within 7-10 days of symptom onset. The near-universal fatality of rabies once symptoms appear underscores the critical importance of prevention through vaccination and appropriate wound management.

- **Diagnostic Challenges:** Antemortem diagnosis of rabies remains challenging due to the non-specific nature of early symptoms and the need for specialized laboratory techniques. Direct fluorescent antibody testing of skin biopsies from the nape of the neck, RT-PCR of saliva or cerebrospinal fluid, and detection of rabies virus antigen in corneal impressions are the primary diagnostic methods. However, these tests may yield false-negative results, particularly early in the clinical course, necessitating repeat testing and clinical correlation.

Post-mortem diagnosis through direct fluorescent antibody testing and immunohistochemistry of brain tissue remains the gold standard for rabies confirmation. The development of rapid diagnostic tests suitable for resource-limited settings represents an ongoing research priority, as timely diagnosis is crucial for implementing appropriate infection control measures and counseling contacts.

Prevention and Control Strategies:

- **Pre-exposure Prophylaxis:** Pre-exposure prophylaxis (PrEP) involves vaccination before potential rabies exposure and is recommended for individuals at high risk of exposure, including veterinarians, animal control officers, laboratory workers, and travelers to endemic areas. PrEP consists of three doses of rabies vaccine administered on days 0, 7, and 21 or 28, providing protective immunity that can be rapidly boosted following exposure.

The advantages of PrEP include simplified post-exposure treatment (eliminating the need for rabies immunoglobulin), reduced healthcare burden in endemic areas, and continued protection during vaccine shortages. However, the high cost of rabies vaccines limits the widespread use of PrEP in resource-limited settings, where it would provide the greatest benefit.

- **Post-exposure Prophylaxis:** Post-exposure prophylaxis represents the cornerstone of rabies prevention in humans and is nearly 100% effective when administered appropriately and promptly. PEP consists of immediate wound cleansing, rabies vaccination, and, for severe exposures, rabies immunoglobulin administration. The WHO recommends a five-dose intramuscular vaccine schedule (days 0, 3, 7, 14, and 28) or alternative intradermal regimens that reduce vaccine requirements while maintaining efficacy.

Wound cleansing with soap and water, povidone iodine, or other virucidal agents can significantly reduce viral load and is recommended for all animal bite wounds, regardless of the animal's rabies status. Rabies immunoglobulin, administered around the wound site and intramuscularly, provides immediate passive immunity while the vaccine-induced active immune response develops.

- **Animal Vaccination Programs:** Mass vaccination of domestic dogs represents the most effective strategy for preventing human rabies deaths in endemic areas. Mathematical modeling demonstrates that maintaining 70% vaccination coverage in dog populations can interrupt rabies transmission and eventually eliminate the disease. Successful dog vaccination campaigns have led to rabies elimination in Western Europe, North America, and parts of Latin America.

Implementation challenges for dog vaccination programs include reaching free-roaming and owned dogs, maintaining cold chains in remote areas, ensuring vaccine quality, and sustaining long-term coverage. Community engagement, integration with existing animal health services, and innovative delivery strategies such as oral vaccination have shown promise in overcoming these barriers.

Public Health Impact and Economic Considerations:

- **Health System Burden:** Rabies imposes significant burdens on healthcare systems, particularly in endemic countries. The need for emergency post-exposure prophylaxis requires 24-hour availability of vaccines and immunoglobulins, specialized training for healthcare workers, and robust cold chain maintenance. In many resource-limited settings, these requirements strain already overburdened health systems and contribute to inequitable access to life-saving treatment.

The psychological impact of rabies exposure extends beyond the medical treatment, affecting patients, families, and communities. The fear associated with rabies exposure can lead to inappropriate treatment-seeking behavior, including reliance on traditional healers or delayed presentation to medical facilities, both of which can compromise treatment effectiveness.

- **Economic Analysis:** The economic burden of rabies includes direct costs of human and animal vaccination, healthcare system costs, livestock losses, and indirect costs such as productivity losses and premature mortality. Studies estimate that rabies causes economic losses exceeding \$8.6 billion annually, with the majority of this burden falling on Asia and Africa.

Cost-effectiveness analyses consistently demonstrate that investments in dog vaccination programs provide substantial returns through reduced human PEP needs and prevented deaths. The economic case for rabies elimination is compelling, with benefit-cost ratios ranging from 7:1 to 45:1 depending on the setting and intervention strategy.

One Health Approaches to Rabies Control:

- **Intersectoral Collaboration:** Effective rabies control requires coordination between human health, animal health, and environmental sectors, embodying the One Health approach to disease prevention. This collaboration is essential given that rabies control strategies targeting animal populations provide the greatest impact on human disease prevention.

Successful One Health initiatives have demonstrated the importance of joint planning, shared surveillance systems, coordinated response protocols, and integrated financing mechanisms. Countries that have eliminated rabies have typically employed comprehensive One Health strategies that address both the immediate need for human protection and the long-term goal of eliminating rabies from animal populations.

- **Community Engagement:** Community engagement represents a critical component of successful rabies control programs. Education campaigns that increase awareness of rabies transmission, appropriate wound care, and the importance of seeking immediate medical attention following animal bites have been shown to reduce rabies deaths significantly.

School-based education programs, community health worker training, and mass media campaigns have proven effective in changing behaviors related to animal bite management. Additionally, community participation in dog vaccination campaigns improves coverage and sustainability while building local capacity for ongoing rabies control efforts.

Challenges and Future Directions:

- **Vaccine Access and Affordability:** Limited access to rabies vaccines and immunoglobulins remains the primary barrier to rabies elimination in many endemic countries. High vaccine costs, complex cold chain requirements, and limited manufacturing capacity contribute to persistent shortages, particularly in rural and remote areas where rabies risk is highest.

Efforts to address these challenges include the development of thermostable vaccines, simplified vaccination regimens, and innovative financing mechanisms. The WHO's initiative to eliminate dog-mediated human rabies by 2030 includes specific targets for improving vaccine access and affordability in endemic countries.

- **Surveillance and Laboratory Capacity:** Inadequate surveillance systems hamper rabies control efforts by limiting understanding of disease distribution, transmission patterns, and the impact of control interventions. Strengthening laboratory capacity for rabies diagnosis, implementing standardized case definitions and reporting systems, and integrating human and animal surveillance represent priority areas for improvement.

The development of point-of-care diagnostic tests suitable for resource-limited settings could revolutionize rabies surveillance by enabling rapid confirmation of suspected cases and

appropriate public health responses. Digital health technologies, including mobile reporting systems and geographic information systems, offer additional opportunities to enhance surveillance effectiveness.

- **Climate Change and Emerging Challenges:** Climate change may alter rabies transmission dynamics through effects on vector populations, animal behavior, and ecosystem structure. Changes in precipitation patterns, temperature extremes, and habitat availability could influence the geographic distribution of rabies reservoirs and create new transmission risks.

The emergence of new lyssaviruses in bat populations and the potential for spillover into terrestrial mammals represent additional challenges for rabies control programs. Continued surveillance for novel lyssaviruses and research into cross-protective immunity will be essential for maintaining effective prevention strategies.

Global Elimination Efforts:

- **WHO Strategy and Targets:** In 2018, the WHO, Food and Agriculture Organization, and World Organisation for Animal Health launched the Global Strategic Plan to eliminate dog-mediated human rabies by 2030. This ambitious initiative aims to reduce human rabies deaths by 90% through increased access to post-exposure prophylaxis, enhanced surveillance, and mass dog vaccination campaigns.

The strategy emphasizes country ownership, regional coordination, and sustainable financing as key elements for success. Progress indicators include reduced human rabies incidence, increased dog vaccination coverage, and strengthened surveillance systems.

- **Success Stories and Lessons Learned:** Several countries and regions have successfully eliminated canine rabies, providing valuable lessons for ongoing elimination efforts. Latin American countries have made remarkable progress through sustained political commitment, regional cooperation, and comprehensive vaccination campaigns. Similarly, rabies elimination in Western Europe demonstrates the feasibility of coordinated multinational efforts.

Key success factors include strong political leadership, adequate and sustained financing, effective intersectoral collaboration, community engagement, and adaptive program management. Countries that have maintained elimination have invested in continued surveillance and vaccination programs to prevent reintroduction.

Conclusions:

Rabies remains a significant public health challenge despite being entirely preventable through appropriate interventions. The disproportionate impact on vulnerable populations in resource-limited settings reflects broader inequities in global health systems and access to essential medical interventions. However, the availability of effective vaccines, proven control strategies, and growing political

commitment to elimination provide reasons for optimism.

Achieving the WHO's goal of eliminating dog-mediated human rabies by 2030 will require sustained investment in vaccination programs, strengthened health systems, enhanced surveillance, and continued innovation in vaccine development and delivery. The One Health approach offers a framework for coordinating these efforts across sectors and ensuring that rabies elimination contributes to broader goals of health security and sustainable development.

The experience gained from rabies elimination efforts will provide valuable insights for controlling other zoonotic diseases and strengthening pandemic preparedness. As we work toward a rabies-free world, the commitment to leaving no one behind must guide our efforts to ensure that all populations have access to life-saving rabies prevention and treatment.

References:

Brunker, K., Jaswant, G., Thumbi, S. M., et al. (2018). Rabies virus lineages in India show evidence of endemicity and genome-wide signatures of purifying selection. *PLoS Neglected Tropical Diseases*, 12(9), e0006757.

Fooks, A. R., Banyard, A. C., Horton, D. L., Johnson, N., McElhinney, L. M., & Jackson, A. C. (2014). Current status of rabies and prospects for elimination. *The Lancet*, 384(9951), 1389-1399.

Hampson, K., Coudeville, L., Lembo, T., et al. (2015). Estimating the global burden of endemic canine rabies. *PLoS Neglected Tropical Diseases*, 9(4), e0003709.

Jackson, A. C. (2016). Human rabies: a 2016 update. *Current Infectious Disease Reports*, 18(11), 38.

Lembo, T., Hampson, K., Kaare, M. T., et al. (2010). The feasibility of canine rabies elimination in Africa: dispelling doubts with data. *PLoS Neglected Tropical Diseases*, 4(2), e626.

Minghui, R., Stone, M., Semedo, M. H., & Nel, L. (2018). New global strategic plan to eliminate dog-mediated rabies by 2030. *The Lancet Global Health*, 6(8), e828-e829.

Nel, L. H., & Rupprecht, C. E. (2007). Emergence of lyssaviruses in the Old World: the case of Africa. *Current Topics in Microbiology and Immunology*, 315, 161-193.

Rupprecht, C. E., Hanlon, C. A., & Hemachudha, T. (2002). Rabies re-examined. *The Lancet Infectious Diseases*, 2(6), 327-343.

Shwiff, S. A., Hampson, K., & Anderson, A. (2013). Potential economic benefits of eliminating canine rabies. *Antiviral Research*, 98(2), 352-356.

Taylor, L. H., Knopf, L., & 74 country Rabies Experts. (2015). Surveillance of human rabies by national authorities—a global survey. *Zoonoses and Public Health*, 62(7), 543-552.

Undurraga, E. A., Meltzer, M. I., Tran, C. H., et al. (2017). Cost-effectiveness evaluation of a novel integrated bite case management program for the prevention of human rabies deaths in Haiti, 2014-2015. *The American Journal of Tropical Medicine and Hygiene*, 96(6), 1307-1317.

Vigilato, M. A. N., Cosivi, O., Knöbl, T., Clavijo, A., & Silva, H. M. T. (2013). Rabies update for Latin America. *Emerging Infectious Diseases*, 19(4), 678-679.

Wallace, R. M., Undurraga, E. A., Blanton, J. D., Cleaton, J., & Franka, R. (2017). Elimination of dog-mediated human rabies deaths by 2030: needs assessment and alternatives for progress based on dog vaccination. *Frontiers in Veterinary Science*, 4, 9.

World Health Organization. (2018). WHO Expert Consultation on Rabies: Third report. *WHO Technical Report Series*, No. 1012.

Zinsstag, J., Schelling, E., Roth, F., Bonfoh, B., de Savigny, D., & Tanner, M. (2007). Human benefits of animal interventions for zoonosis control. *Emerging Infectious Diseases*, 13(4), 527-531.